Constrained mixed-integer blackbox optimization for the selection of materials of an automotive vehicle

Marie-Ange Dahito

Supervisors: Laurent Genest¹(COVP.Optim) Nikolaus Hansen^{2,3}, Dimo Brockhoff^{2,3}(CMAP, RandOpt) José Neto⁴, Alessandro Maddaloni⁴(Méthodes)

Inría

March, 15th 2021

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000

Summary

1 The PhD subject

- The context
- The issue

2 The key challenges

- The optimization problem
- The main challenges

3 The state of the study

- Identification of interesting methods
- Conception and implementation of a finite element test case
- Benchmarking of algorithms on literature test problems

4 The perspectives

- Short-term perspectives
- Future orientations

The PhD subject	The key challenges	The state of the study	The perspectives
•00	000	0000000	00000

1 The PhD subject

- The context
- The issue
- 2 The key challenges
- **3** The state of the study
- 4 The perspectives

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
The context			

- More and more restrictive regulations (safe automation, *CO*₂ emissions...)
- Stellantis committed to a reduction of its consumption
 - \Rightarrow Reductions of the weights of the vehicles
- Rising costs (new embedded technologies, electrification, mileage capacity...)
- Need to meet a certain performance while maintaining low production costs ⇒ Numerical optimization used as a decision making tool at different phases in the vehicle design process
 - \Rightarrow Optimization on the body in white through finite element models
- e.g. optimization on the body in white to determine the optimal thicknesses

Figure: Numerical optimization at Stellantis during the vehicle design process.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
The issue			

- A lower weight of a part with the same property \Rightarrow more expensive material
- A better balance between costs and weights reductions has to be found
- Idea: add new optimization levers in the size optimization
 - \Rightarrow The choice of materials (cf right picture)
 - \Rightarrow The design alternatives (cf left picture)
- No available algorithm to fulfill these needs within an acceptable numerical budget
 - \Rightarrow Need to design a new algorithm: goal of the PhD

Presence (left) and absence (right) of the right reinforcement of the instrument panel support

Figure: The design alternatives and the choice of materials as optimization levers.

Design	altern	atives
\sim		1000

The PhD subject	The key challenges	The state of the study	The perspectives
000	00	0000000	00000

1 The PhD subject

- 2 The key challenges
 - The optimization problem
 - The main challenges

3 The state of the study

4 The perspectives

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
The optimization problem			

- The variables are the geometric parameters (thicknesses, shape parameters) of the model and the materials of each part of the body in white (BIW)
- Minimize the cost of the BIW
- Minimize the weight of the BIW
- Maximize the carry-over (reused parts)
- Respect the expected performance of the vehicle
- Long simulation times from finite element models
 - \rightarrow Stiffness: 20 min to 1 hour
 - \rightarrow Crashworthiness: 6 to 8 hours
 - \rightarrow Vibro-acoustic (NVH): 1 to 2 hours
- The numerical cost is important as a solution is desired in a limited time

Figure: Stiffness, crashworthiness and vibro-acoustic performance from finite element models.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
The main challenges			

- No analytical formula of the finite element models -> blackbox optimization
- Several objectives -> multi-objective optimization
- Materials cannot be ranked: categorical variables -> mixed-integer optimization
- Up to 200 constraints to satisfy -> constrained optimization
- Limited computation capacity

Separately, each of these optimization branches has a quite furnished literature.

But a complexity lies in their overlap and the fact that the corresponding literature is relatively poor.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000

1 The PhD subject

2 The key challenges

3 The state of the study

- Identification of interesting methods
- Conception and implementation of a finite element test case
- Benchmarking of algorithms on literature test problems

4 The perspectives

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
Identification of interesting methods			

Evolutionary algorithms

- NSGA-II: well-known genetic algorithm for multi-objective optimization
- CMA-ES: state-of-the-art evolutionary algorithm for derivative-free optimization

Direct local search methods

MADS: well-known method using asymptotically dense directions

\rightarrow The methods above use numerous evaluations

 Surrogate-based techniques (kriging, radial basis functions...) can be used to save blackbox evaluations

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
Conception and implementation of a finite	element test case		

- ightarrow The real case is computationally expensive and a smaller version was not available
 - Finite element mechanical test case
 - 8 nodes, 13 elements of square sections
 - Clamped to both sides at Nodes 1 and 5
 - Application of a vertical force at Node 3
 - Three possible objective functions: cost, weight and compliance
 - Mixed-integer problem (variables: materials and thicknesses)
 - Enable to cope with the long computation times
 - Tests of NSGA-II and CMA-ES

Figure: Finite element mechanical test case of bar elements.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
Conception and implementation of a finite	element test case		

Example of a single-objective problem

$m \in [\![1, 4]\!]$ (1 for titanium, 2 for magnesium, 3 for steel and 4 for aluminum), t: thickness, U: displacement

Figure: Finite element mechanical test case of bar elements.

Figure: The choice of materials as an optimization lever.

The PhD subject	The key challenges	The state of the study	The perspectives		
000	000	0000000	00000		
Conception and implementation of a finite element test case					

Example of a single-objective problem

 $m \in [1, 4]$ (1 for titanium, 2 for magnesium, 3 for steel and 4 for aluminum), t: thickness, U: displacement

Figure: Evolution of the costs for NSGA-II and CMA-ES with thick lines for the quartiles.

The PhD subject	The key challenges	The state of the study	The perspectives		
000	000	0000000	00000		
Conception and implementation of a finite element test case					

Example of a multi-objective problem

 $m \in \llbracket 1, 4 \rrbracket$ (1 for titanium, 2 for magnesium, 3 for steel and 4 for aluminum), t: thickness, U: displacement

$$\begin{array}{l} \underset{x \in \mathbb{R}^{26}}{\text{minimize}} & \left\{ \begin{array}{l} \operatorname{cost}(x) \quad x = [m_{\text{el}1}, \ldots, m_{\text{el}13}, t_{\text{el}1}, \ldots, t_{\text{el}13}] \\ \underset{x \in \mathbb{R}^{26}}{\text{weight}(x)} \\ \underset{x \text{compliance}(x)}{\text{compliance}(x)} \end{array} \right. \\ \\ \text{subject to} & \left\{ \begin{array}{l} |u_{y3}(x)| < u_{y3,\max} \\ x_{1:13} \in \llbracket 1, 4 \rrbracket & discrete \ parameters \\ x_{14:26} \in [0.01, 0.05] \ (\text{m}), \end{array} \right.$$

Figure: Finite element mechanical test case of bar elements.

The PhD subject	The key challenges	The state of the study	The perspectives		
000	000	0000000	00000		
Conception and implementation of a finite element test case					

Example of a multi-objective problem

 $m \in [1, 4]$ (1 for titanium, 2 for magnesium, 3 for steel and 4 for aluminum), t: thickness, U: displacement

$$\begin{array}{l} \underset{x \in \mathbb{R}^{26}}{\text{minimize}} & \left\{ \begin{array}{l} \operatorname{cost}(x) \quad x = [m_{\text{el1}}, \ldots, m_{\text{el13}}, t_{\text{el1}}, \ldots, t_{\text{el13}}] \\ \underset{\text{weight}(x)}{\text{weight}(x)} \\ \underset{\text{compliance}(x)}{\text{compliance}(x)} \\ \end{array} \right. \\ \\ \text{subject to} & \left\{ \begin{array}{l} |u_{y3}(x)| < u_{y3,\max} \\ x_{1:13} \in \llbracket 1, 4 \rrbracket & discrete \ parameters \\ x_{14:26} \in [0.01, 0.05] \ (\text{m}), \end{array} \right.$$

Figure: Finite element mechanical test case of bar elements.

nsga2, rounded offspring, min cost&weight&compliance, case 1

Figure: Pareto estimations for 20 runs of NSGA-II.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	00000000	00000
Conception and implementation of a finite	element test case		

Comments from these numerical tests

- CMA-ES seems to converge faster than NSGA-II
- NSGA-II sometimes ends to a smaller objective
- The Pareto estimations of NSGA-II cover varied zones according to the run
- Many evaluations needed before convergence (between 10³ and 10⁴)
- Finding the good penalization can be laborious even for a single non-linear constraint

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	00000000	00000
Benchmarking of algorithms on literature to	est problems		

- Use of the continuous suite BBOB of the COCO platform
- Benchmarking of solvers of the library SciPy
 - \rightarrow Co-written workshop paper for the GECCO conference of 2019
 - \rightarrow SLSQP performs well on BBOB

But further tests on mixed integer problems were less successful \Rightarrow not kept

Figure: ECDF plot: performance of multivariate solvers of SciPy on BBOB, aggregated in dimension 20.

The PhD subject	The key challenges	The state of the study	The perspectives		
000	000	0000000	00000		
Benchmarking of algorithms on literature test problems					

Tests of MADS from the Nomad software on BBOB

\rightarrow The variants ORTHO N $+\,1$ NEG and ORTHO 2N of MADS perform better than the other ORTHO settings

Figure: ECDF plot: performance of the OrthoMADS algorithms on BBOB, aggregated in dimension 20.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
Benchmarking of algorithms on literature t	est problems		

Tests of MADS from the Nomad software on BBOB

 \rightarrow The variants ORTHO N+1 NEG and ORTHO 2N of MADS perform better than the other ORTHO settings

 \rightarrow Comparison with other algorithms: MADS in the mean and CMA-ES among the best on the test problems

Figure: ECDF plot: performance of a few algorithms on BBOB, aggregated in dimension 20.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
Benchmarking of algorithms on literature t	est problems		

Tests of MADS from the Nomad software on BBOB

 \rightarrow The variants ORTHO N+1 NEG and ORTHO 2N of MADS perform better than the other ORTHO settings

 \rightarrow Comparison with other algorithms: MADS in the mean and CMA-ES among the best on the test problems

 \rightarrow MADS performs well on some multi-modal problems like the Gallagher functions with several local optima

Figure: ECDF plot: performance of a few algorithms on the Gallagher 101 peaks function, aggregated in dimension 20.

Figure: ECDF plot: performance of a few algorithms on the Gallagher 21 peaks function, aggregated in dimension 20.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000

1 The PhD subject

2 The key challenges

3 The state of the study

4 The perspectives

- Short-term perspectives
- Future orientations

The key challenge 000 The state of the study 00000000

The perspectives ○●○○○

- Test the variants ORTHO N + 1 NEG and ORTHO 2N of MADS on constrained and mixed-integer suites
- Write a paper on the performance of MADS
- Test promising methods on a small automotive test case: a lateral crashworthiness case consisting of 6 parts on the battery zone
- First focus on single-objective optimization

Figure: Pole lateral crash.

Figure: CAD model of a vehicle showing the underseat cross member on the battery zone.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
Short-term perspectives			

The optimization problem is:

 $\begin{array}{ll} \min_{x \in \mathbb{D}} & \text{weight} & (kg) \\ \\ \text{s.t.} & \left\{ \begin{array}{ll} \cos t & \leq \text{initial cost} & (f) \\ \operatorname{car intrusion} & \leq \text{maximal intrusion} & (mm) \\ \text{strength on the battery} & \leq \text{maximal strength} & (kN) \\ \text{4 decelerations on the battery} & \leq 4 \text{ maximal decelerations} & (m/s^2) \\ \text{displacement} & \leq \text{maximal displacement} & (mm) \\ s_1 \in [-10, 0], s_2 \in [-30, 30], & s_3 \in [-20, 20] \text{ and } s_4 \in [0, 20] & (mm) \\ t_i \in [0.65, 2], & i \in \{1, \dots, 6\} \\ m_i \in \{1, \dots, 11\}, & i \in \{1, \dots, 6\}, \end{array} \right.$

with $x = [s_1, .., s_4, t_1, .., t_6, m_1, .., m_6]$ (shape parameters, thicknesses and materials).

he PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
uture orientations			

- Comparison of existing methods on problems stemming from the literature and applications:
 - Variants of ORTHOMADS
 - Deterministic algorithms (NEWUOA, BFGS, Nelder-Mead method...)
 - Evolutionary algorithms (CMA-ES, NSGA-II, PSO...)
- Development of new model-based methods for (constrained) mixed-integer problems
 - Survey and evaluation of surrogate models (Kriging, RBF, RSM...) on mixed-integer literature and application problems
 - Development of new approaches based on different types of surrogates to deal with the categorical variables
 - Comparison of the new proposals with deterministic methods and evolutionary algorithms on:
 - literature and application problems
 - an automotive problem

		2021									20)22				
	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Benchmarking																
Surrogates																
Manuscript																
Defense																

Figure: Schedule for the rest of the PhD.

The PhD subject	The key challenges	The state of the study	The perspectives
000	000	0000000	00000
Future orientations			

Thank you for your attention!

NSGA-II

Figure: The generation of populations in NSGA-II through recombination, non-dominated sorting and crowding distance sorting.

Marie-Ange Dahito

¹E. Abiri, Z. Bezareh, and A. Darabi. The optimum design of RAM cell based on the modified-GDI method using Non-dominated Sorting Genetic Algorithm II (NSGA-II). *Journal of Intelligent & Fuzzy Systems*, 32(6):4095–4108, 2017.

CMA-ES

Figure: CMA-ES: Sampling of the population (left), update of the covariance matrix from the best individuals (middle) and update of the mean of the next generation (right).

Marie-Ange Dahito

²Y. Akimoto and N. Hansen. CMA-ES and Advanced Adaptation Mechanisms. In *Proceedings of the Genetic and Evolutionary Computation Conference Companion*, GECCO '18, page 720–744, New York, NY, USA, 2018. Association for Computing Machinery.

MADS

Figure: Example of mesh adaptation and directions generation in MADS.

³S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw., 37:44:1-44:15, 2011.

MADS directions

Figure: Three families of directions for the poll step of MADS.

⁴S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw., 37:44:1-44:15, 2011.

Surrogate-based optimization

Figure: An example of surrogate-based optimization. Source: Kim, S.H., Boukouvala, F. Machine learning-based surrogate modeling for data-driven optimization: a comparison of subset selection for regression techniques. Optim Lett 14, 989–1010 (2020).

Pareto dominance

Figure: Pareto dominance and Pareto front.

⁵M. H. Muaafa. *Multi-criteria Decision-making Framework for Surveillance and Logistics Applications*. Diss. Stevens Institute of Technology, 2015.

Cost optimization with the 3 methods

20 runs of NSGA-II and CMA-ES, 1 run of MADS, min cost, case 1

Figure: Evolution of the costs for 20 runs of CMA-ES (blue) and NSGA-II (red) and 1 run of MADS (green) with thick lines for the quartiles.

Cost optimization with NSGA-II and two population sizes

20 runs of NSGA-II with different population sizes, min cost, case 1

Figure: Evolution of the costs for 20 runs of NSGA-II with a population size of 26 (red) and 100 (mauve) with thick lines for the quartiles.

Cost optimization with CMA-ES and two population sizes

20 runs of CMA-ES with different population sizes, min cost, case 1

Figure: Evolution of the costs for 20 runs of CMA-ES with a population size of 26 (blue) and 13 (cyan) with thick lines for the quartiles.