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Surrogate models in black-box optimization
True problem :

min
x∈Rn

f (x)

s.t. cj(x) ≤ 0, ∀j ∈ {1, 2, . . . ,m}
(P)

Surrogate problem :

min
x∈Rn

f̃ (x)

s.t. c̃j(x) ≤ 0, ∀j ∈ {1, 2, . . . ,m}
(P̃)

Sample points (cache) :

X = {x (1), . . . , x (p)}
y = {f (x (1)), . . . , f (x (p))}
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Surrogate models in black-box optimization

Algorithm

6

x0

?
x∗

P
x f (x)

number of evaluations += 1

�

-

x f̃ (x)
P̃

�

-

X = X ∪ {x}
y = y ∪ {f (x)}
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Surrogate models in black-box optimization

Seminal article : Booker et al. (1999) [1]

Types of surrogate models :

• Radial Basis Functions [2, 3]
• Quadratic Models [4, 5]
• Kernel Smoothing [6, 7]
• Gaussian Processes [8, 9, 10]
• . . .
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Stochastic surrogate models

x ∈ Rn −→ f̃ (x)

, σ̃(x) ; c̃j(x), σ̃j(x)

Figure: Gaussian process regression on f : x 7→ x sin x
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Stochastic surrogate models

What is the use of a stochastic surrogate ?

I Expected Improvement [9] :

EI (x) = E[I (x)]

= E[max{f min − f (x), 0}]

I Probability of feasibility [11] :

P(x) = P[cj(x) ≤ 0, ∀j ]

I Probability of Improvement [11] :

PI (x) = P[I (x) > 0]

= P[fmin > f (x)]
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Stochastic surrogate models

What is the use of a stochastic surrogate ?

I Expected Feasible Improvement [11] :

EFI (x) = EI (x)P(x)

I Uncertainty in the feasibility [11] :

µ(x) = P(x)(1− P(x))

I Probability of Feasible Improvement [11] :

PFI (x) = PI (x)P(x)
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Stochastic surrogate models

B. Talgorn, S. Le Digabel, M. Kokkolaras
Statistical Surrogate Formulations for Simulation-Based Design
Optimization, 2015 [11]

min
x∈Rn

f̃ (x)

s.t. c̃j(x) ≤ 0, ∀j ∈ {1, 2, . . . ,m}
(P̃)

��
��

��
��

��
��

��
��

��PPPPPPPPPPPPPPPPPP

8 formulations of the surrogate problem P̃ integrating EI , P, PI ,
EFI , µ and PFI .
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Statistical interpretation of an ensemble of surrogate
models

There is not one surrogate better than the others !

We can use an ensemble of s surrogates S = {f̃1, f̃2, . . . , f̃s}.

x ∈ Rn −→ f̃ (x) =
s∑

k=1

wk f̃k(x)

With wk ≥ 0, ∀k = 1, . . . , s and
s∑

k=1

wk = 1.

σ̃(x) ?

EI , P, PI , EFI , µ, PFI

How to create one stochastic surrogate model out of multiple
deterministic surrogate models ?
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Statistical interpretation of an ensemble of surrogate
models

Figure: Two matching surrogates of the same problem
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Statistical interpretation of an ensemble of surrogate
models

Figure: Two conflicting surrogates of the same problem
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Statistical interpretation of an ensemble of surrogate
models

I S = {f̃1, f̃2, . . . , f̃s}

I D a positive spanning set of Rn

I t a ”finite difference” size parameter

For a given point x ∈ Rn, we define :

I The number of surrogates that predict a decrease in the
direction d ∈ D :

nd<x =
∣∣{f̃ ∈ S : f̃ (x + td) < f̃ (x)

}∣∣

16 / 25



Statistical interpretation of an ensemble of surrogate
models

I S = {f̃1, f̃2, . . . , f̃s}
I D a positive spanning set of Rn

I t a ”finite difference” size parameter

For a given point x ∈ Rn, we define :

I The number of surrogates that predict a decrease in the
direction d ∈ D :

nd<x =
∣∣{f̃ ∈ S : f̃ (x + td) < f̃ (x)

}∣∣

16 / 25



Statistical interpretation of an ensemble of surrogate
models

I S = {f̃1, f̃2, . . . , f̃s}
I D a positive spanning set of Rn

I t a ”finite difference” size parameter

For a given point x ∈ Rn, we define :

I The number of surrogates that predict a decrease in the
direction d ∈ D :

nd<x =
∣∣{f̃ ∈ S : f̃ (x + td) < f̃ (x)

}∣∣

16 / 25



Statistical interpretation of an ensemble of surrogate
models

I S = {f̃1, f̃2, . . . , f̃s}
I D a positive spanning set of Rn

I t a ”finite difference” size parameter

For a given point x ∈ Rn, we define :

I The number of surrogates that predict a decrease in the
direction d ∈ D :

nd<x =
∣∣{f̃ ∈ S : f̃ (x + td) < f̃ (x)

}∣∣

16 / 25



Statistical interpretation of an ensemble of surrogate
models

I The number of surrogates that predict a decrease in the
direction d ∈ D :

nd<x =
∣∣{f̃ ∈ S : f̃ (x + td) < f̃ (x)

}∣∣

I The order-based uncertainty (inspired by the article [12]) :

U f
OB(x) =

1

|D|
∑
d∈D

nd<x(s − nd<x)

(s/2)2

For d ∈ D :

(nd<x = 0 or nd<x = s) ⇒ nd<x(s − nd<x)

(s/2)2
= 0

nd<x = s/2 ⇒ nd<x(s − nd<x)

(s/2)2
= 1
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Statistical interpretation of an ensemble of surrogate
models

Figure: Multiple surrogates on the same sample set

Multiple surrogates on the same sample set

D = {−1, +1}

t = 0.3
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Statistical interpretation of an ensemble of surrogate
models

Figure: Multiple surrogates on the same sample set

Multiple surrogates on the same sample set
and order-based uncertainty

D = {−1, +1}

t = 0.3
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Statistical interpretation of an ensemble of surrogate
models

Adaptation to the constraint j : S = {c̃1
j , c̃

2
j , . . . , c̃

s
j }

I The number of surrogates that predict feasibility :

nx<0 =
∣∣{c̃j ∈ S : c̃j(x) < 0

}∣∣

I The order-based uncertainty on the constraint j :

U j
OB(x) =

nx<0(s − nx<0)

(s/2)2

(nx<0 = 0 or nd<x = s) ⇒ nx<0(s − nx<0)

(s/2)2
= 0

nx<0 = s/2 ⇒ nx<0(s − nx<0)

(s/2)2
= 1
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Incorporation in a black-box optimization algorithm

Initial objective : recover σ̃(x), σ̃j(x), EI (x), P(x) and PI (x).

σ̃(x) −→ U f
OB

σ̃j(x) −→ U j
OB

EI (x) −→ ?

P(x) −→ ?

PI (x) −→ ?
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Incorporation in a black-box optimization algorithm

Future work :

I Adapt EI , P and PI

I Implement the method

I Adjust the ”finite difference” parameter t
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