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Problem statement

Problem of interest:

N
mafC) 0= LA
e large problems n> 103
e fi:R" — R does not depend on all of x
o fic€? i=1,.,N
Example:
n-1

;\;[iRr)qﬁ(xszH fo(Xn=1,Xn) + Y fi(Xi=1,Xi) Xi+1)
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The linear operator U; gives the (linear combination of) variables used by
f;:
) = F(U)
Vf(x) =XN, UTVFi(Uix)
V2 f(x) = Z,I\il UiTV2E(UiX) U;
V2f(x) =B = Zf\il UITE,'U,'

£ : R" —R an element function

e U; e R"*" uysually a linear operator far more efficient than a matrix
e BieR"™"i j=1,..,N

o If HlaxN} n; < n, store {E;},{\il requires (much) less memory than B
1=11,...,

Theorem SGriewank and Toint [1982a])
Every problem having a sparse hessian is partially separable.



Motivation for studying the PSS

The PSS allows partitioned QN updates (PQN) (Griewank and Toint
[1982b])
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e Apply QN update to each B; using U;s and VF(Ui(x+5s)) - VF(Uix)
. le.\il B; still satisfies secant equation

e Advantages:
e does not increase memory requirements {/B7}i’\i1 (# standard QN)
e keep the sparsity of B (# L-BFGS)
e fully parallelizable: each B; update is independent: (U;s,¥;) such
that ; = V5;(Ui(x+5)) - Vf{(U;x)
e rank update » 1 or 2



Towards a complete optimization method

A trust-region method or a linesearch framework around the PQN update
leads us to solve a partitioned linear system at every iteration:

e Conjugate gradient (CG)

e require matrix-vector products: Bv = (Z UI-TE,'U,']V

e can compute B;U;v in parallel and assemble with UIT
e (multi-)frontal factorization (Conn et al. [1994])

e Cholesky factorization dedicated to partitioned matrix

° {U,-}’{\il provide the sparsity of B

e the permutation applied to the matrix is critical: front size, filling,
parallelizable blocs

e partitioned trust-region method (Conn et al. [1996])



Efficient derivatives computation

Reduce f(x) =X N, %(U;x) evaluation required to compute Vf from
{Vf,-}l.’\il in case every f;(x) are evaluated at once and by using the
structure {U,-}I.’\il.

5
f(x)= Z fi(x) = ].TF(X) = f1(x1,x3)+h(x1,x4)+F3(x2, x3)+fa(x2, xa) +15(x3)
i=1

f(x) O A
1 0
f(x) O o 10
F(x)=| fs5(x) |, VF= O A , Sc= 01
fa(x) % o 01
fs(x) A

If VF is dense the seed S to compute VF is Iy implying 4 f evaluations.
The PSS {U,-}I’.\i1 induce graph structure whose a proper coloring define
the compressed seed S implying 2 f evalutions.



Automatic differentiation (AD)

Compute the derivative of a numerical procedure f:R" — R™

e Forward mode

e more efficient than reverse if m>n
e memoryless method

e Reverse mode

e more efficient than forward if m<n
e must build a tape of the numerical procedure.



AD and PSS

e If every f; is available and evaluate at once a similar procedure to
compressed seed may be used (Bischof et al. [1997])
e If each # is available individually:
e forward mode is more efficient since n; < n
e the tape of each f; is much smaller than f (smaller expression tree)
e in practice, f,:ﬁ allowing to reduce the number of tapes needed
e Hessian-vector products sz,-( Uix)Ujv combine both approaches and
their properties in PSS. It allows a complete parallel procedure to
compute V2f(x)v from Z,"\i1 UI.TV21?,-(U,-X)U,-V



Other uses of PSS in the literature

¢ Dedicated crossover operator, the key of genetic algorithms (Durand
and Alliot [1998])

e Specific to DFO:
e Interpolations based on the knowledge of {?,-},{\il
e By interpolating each 7, = n,.2 points instead of = n?

e Reducing the {f,-}l.’ll evaluations depending the structure to obtain
those ”;‘2 points

e Dedicated efficient procedure to recompute f,Vf if x;.1— X is
sparse, only the £, Vf; impact must be recompute

e Brute Force Optimizer (BFO): (Porcelli and Toint [2021])



e Problem structure must be explicited by the modeler
o Aif Zn? > n?: not applicable in large scaIAe, require more space and
computation than BFGS, ex: f(x)=X", fi(x1,x2, ..., x;)

e Method to find a new basis to increase the sparsity of the problem
Kim et al. [2009]
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Historically

Study of PSS is about 40 years old Griewank and Toint [1982a]
During the last 40 years, work mainly done by Conn, Gould and Toint

Resulting LANCELOT a Fortran software using the SIF format

e AMPL (commercial software) also uses the PSS and detects it
automatically.
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e Provide modern software to detect PSS automatically:

e Assess convexity of the f; automatically

Construct new optimization methods that exploit PSS
4 julia modules
Make it easily usable (# LANCELOT)

e Survey on PSS
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Module CalculusTreeTools.jl

e Detect PSS ({f;}i’\il,{Ui}i’\il) automatically from f

e Automatic strict convexity detection and bounds propagation
e Interfaced to JuMP, NLPModelJuMP, ADNLPModel
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fi(x) =52 [5] constant non strictly convex
f(x) = sin(x1 + x2) [-1,1] nonlinear non strictly convex
f3(x) =x2 x x3 [-oo,00] quadratic  non strictly convex

fa(x) = —(x3 +x4)? [0,00] quadratic non strictly convex
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Module PartiallySeparableNLPModel.jl

e define the algorithm structures around PSS

e Test problem Rosenbrock function (R"” — R)

time to compute gradient times to compute gradient

> Lo0ad s
1.50x10" | //
s 7.50x10 |
Loowad S/
// - 5.00x10" |-
L i
5.00x10° //,/ 2s0xad |
0t -~ 0L
Figure 1: PSF gradient t/n Figure 2: comparison ton AD t/n
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Module PartiallySeparableSolver.jl

e Trust-region methods using partitioned-QN solved by CG
e 40 PS problems of size n=1000

—— bigs_SPS
trunk_lbfgs_JuMP.
trunk_lbfgs_adnipmodel

—— bfgs_SPS 100
trunk_ibfgs_JuMP.
trunk_Ibfgs_adnipmodel

100

§on §on
b=} =
2 2
5 =
5 k]
c c
§ 050 § 050
I g
I <
IS &

°
°

000, 2 4 6 8 0'0000 25 50 75 100
Within this factor of the best (log scale) Within this factor of the best (log scale)

Figure 3: time Figure 4: obj+5grad
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Module PartitionedStructure.jl

e Dedicated to partitioned structured: vectors/matrices. Also somes
specificity about PSS.

e Multi-frontal factorization implementation
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Improving axes

Currently a trust region using a P-BFGS update must solve at each
iterate the partitioned linear system:

Ax=b
i UTAiUix zUTB
B bj = —Vf, x

=B,

J>>M

The complexity of the whole method:

e PQN: update {E,-}I.’\il (fully parallelizable, depend of n;)
e TR management is constant

e Solving the partitioned linear system: CG is state of the art
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Method to solve a partitonned linear system

The following properties must hold:

e Do not form B

e Be parallel

e To use it with a trust region an approximate solution is enough.
e The solution must be a descent direction

The ideal would be an iterative method that iteratively check TR
constraint (similar to CG).
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An other way to parallelize

In completely separable case solving each A%l = b;, x' € R" solve
Ax =b. R
& & J00-(&)
0 A b?

e Plan to form a solution x from {)?"}12:1 such that A;x' = b;

e Consequently each A;jx’ = b; may be solve in parallel.

)?1
NH
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The cas of two overlapping blocs

Suppose Aj, Ay € R™*M RMXM guch that A€ R™".

/311,1 A\h,z 0 511
Ax = A12,1 A12‘2A+ A21,1 4212 X = b12A+ b21 =b
0 A22_1 A22,2 ba,

Suppose x1,%2 such that ﬂp?” = Bp, p=1,2 and an approximation x’ of
x* such that:

X-
1 2
= =T =
- ) -
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Consequently Ax’ —b

Apu L +Ap1z 2 —bp1
Apz 1X1 +Apsz2 —bpz
Replace %P by Uix":

o7 Al _h
A111X1 +A112X2 +A112(X )—bll

=l 7 ol
A111X1+A112X2 b11+A112( X2) 0

-

=0_
o7 Al _h
/4\121X1 +/4\122X2 +A122(X ) bl2

A121X1+A122X2 b12+A122(X —X2) 0

A211x1+A221x2+A221(x —xl) b2
A211X1+A221X2 b21+A221(X7_X1) 0

A221X1 +A222x2 +A211(X —Xl) b22

o2 !
A221X1+A222X2 b2 +A211(X —x12)—0

-~~~
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A new problem

The residual Ax’ — b is the following:

n <7 =
) _ ?A11,2(X':X21) ,
Ax'—b=— Alz,z()?' :5(\21)"'7’421,1(?' _)?12)
Aoy (X7 =27)

This equation link x’,%’ and a approximate solution Ax = b (ie Bs=-g).
We would like to minimize the residual Ax’ — b; depending only of <’

Remark: The optimum of this problem Ax’ —b may be not null since the
approximate x’ is arbitrary.
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Direct problem

r

e Problem dimension: n=ny + no> — njpter
e Variable dimension: nj,ter

o Directionnal derivative of X° are combination of Ay, and Aj |

25



Conclusions

An ongoing work:

e Still don't know how to solve this new problem
e May be extends to more than 2 blocs

e Litterature review about bloc matrix resolution (ADMM)

26



References




A Griewank and Ph Toint. On the unconstrained optimization of partially
separable functions. In M. J. D Powell, editor, Nonlinear Optimization
1981, pages 301-312. Academic press, 1982a. Publication editors :
M.J.D. Powell.

A Griewank and Ph Toint. Partitioned variable metric updates for large
structured optimization problems. 39:119-137, 1982b. doi:
10.1007/BF01399316.

A Conn, N Gould, M Lescrenier, and Ph Toint. Performance of a
multifrontal scheme for partially separable optimization. In Advances in
Optimization and Numerical Analysis, pages 79-96. Springer, 1994.
doi: 10.1007/978-94-015-8330-5\_6.

A Conn, N Gould, A Sartenaer, and Ph Toint. Convergence properties of
minimization algorithms for convex constraints using a structured trust
region. 6(4):1059-1086, 1996. doi:
https://doi.org/10.1137/S1052623492236481.

C Bischof, A Bouaricha, P Khademi, and J Moré. Computing gradients
in large-scale optimization using automatic differentiation. 9:185-194,
1997. doi: https://doi.org/10.1287/ijoc.9.2.185.

26



N Durand and J-M Alliot. Genetic crossover operator for partially
separable functions. In GP 1998, 3rd annual conference on Genetic
Programming, Madison, United States, 1998. URL
https://hal-enac.archives-ouvertes.fr/hal-00937718.

M. Porcelli and Ph Toint. Exploiting problem structure in derivative free
optimization, 2021.

S Kim, M Kojima, and Ph Toint. Recognizing underlying sparsity in
optimization. 119(2):273-303, Jul 2009. ISSN 1436-4646. doi:
10.1007/s10107-008-0210-4. URL
https://doi.org/10.1007/s10107-008-0210-4.

26


https://hal-enac.archives-ouvertes.fr/hal-00937718
https://doi.org/10.1007/s10107-008-0210-4

	References

