
Partially separable structure (PSS) May 20, 2021

Paul Raynaud

May 20, 2021

Polytechnique Montréal, Grenoble INP

1

Problem statement

Problem of interest:

min
x∈Rn

f (x) f (x) :=
N∑
i=1

fi (x)

� large problems n> 103

� fi :R
n →R does not depend on all of x

� fi ∈C 2, i = 1, ..,N

Example:

min
x∈Rn

f1(x1,x2)+ fn(xn−1,xn)+
n−1∑
i=2

fi (xi−1,xi ,xi+1)

2

De�nition

The linear operator Ui gives the (linear combination of) variables used by

fi :
f (x) =∑N

i=1 f̂i (Uix)

∇f (x) =∑N
i=1U

>
i ∇f̂i (Uix)

∇2f (x) =∑N
i=1U

>
i ∇2 f̂i (Uix)Ui

∇2f (x)≈B =∑N
i=1U

>
i B̂iUi

� f̂i : R
ni →R an element function

� Ui ∈Rni×n usually a linear operator far more e�cient than a matrix

� B̂i ∈Rni×ni , i = 1, ...,N

� If max
i={1,...,N}

ni ¿ n, store {B̂i }
N
i=1 requires (much) less memory than B

Theorem (Griewank and Toint [1982a])
Every problem having a sparse hessian is partially separable.

3

Motivation for studying the PSS

The PSS allows partitioned QN updates (PQN) (Griewank and Toint

[1982b])

B =
N∑
i=1

Bi =
N∑
i=1

U>
i B̂iUi

� Apply QN update to each B̂i using Ui s and ∇f̂i (Ui (x +s))−∇f̂i (Uix)

�

∑N
i=1Bi still satis�es secant equation

� Advantages:

� does not increase memory requirements {B̂i }
N
i=1 (6= standard QN)

� keep the sparsity of B (6= L-BFGS)

� fully parallelizable: each B̂i update is independent: (Ui s , ŷi) such

that ŷi =∇f̂i (Ui (x + s))−∇f̂i (Uix)

� rank update � 1 or 2

4

Towards a complete optimization method

A trust-region method or a linesearch framework around the PQN update

leads us to solve a partitioned linear system at every iteration:

� Conjugate gradient (CG)

� require matrix-vector products: Bv =
(∑

U>
i
B̂iUi

)
v

� can compute B̂iUiv in parallel and assemble with U>
i

� (multi-)frontal factorization (Conn et al. [1994])

� Cholesky factorization dedicated to partitioned matrix

� {Ui }
N
i=1 provide the sparsity of B

� the permutation applied to the matrix is critical: front size, �lling,

parallelizable blocs

� partitioned trust-region method (Conn et al. [1996])

5

E�cient derivatives computation

Reduce f (x)=∑N
i=1 f̂i (Uix) evaluation required to compute ∇f from

{∇f̂i }Ni=1 in case every f̂i (x) are evaluated at once and by using the

structure {Ui }
N
i=1.

f (x)=
5∑

i=1
fi (x)= 1>F (x)= f̂1(x1,x3)+f̂2(x1,x4)+f̂3(x2,x3)+f̂4(x2,x4)+f̂5(x3)

F (x)=


f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

 , ∇F =


ä 4
ä ¦

♦ 4
♦ ¦

4

 , Sc =


1 0

1 0

0 1

0 1


If ∇F is dense the seed S to compute ∇F is I4 implying 4 f evaluations.

The PSS {Ui }
N
i=1 induce graph structure whose a proper coloring de�ne

the compressed seed Sc implying 2 f evalutions.

6

Automatic di�erentiation (AD)

Compute the derivative of a numerical procedure f :Rn →Rm

� Forward mode

� more e�cient than reverse if m> n

� memoryless method

� Reverse mode

� more e�cient than forward if m< n

� must build a tape of the numerical procedure.

7

AD and PSS

� If every f̂i is available and evaluate at once a similar procedure to

compressed seed may be used (Bischof et al. [1997])

� If each f̂i is available individually:

� forward mode is more e�cient since ni ¿ n

� the tape of each f̂i is much smaller than f (smaller expression tree)

� in practice, f̂i = f̂j allowing to reduce the number of tapes needed

� Hessian-vector products ∇2 f̂i (Uix)Uiv combine both approaches and

their properties in PSS. It allows a complete parallel procedure to

compute ∇2f (x)v from
∑N

i=1U
>
i ∇2 f̂i (Uix)Uiv

8

Other uses of PSS in the literature

� Dedicated crossover operator, the key of genetic algorithms (Durand

and Alliot [1998])

� Speci�c to DFO:

� Interpolations based on the knowledge of {f̂i }
N
i=1

� By interpolating each f̂i , ≈ n2
i
points instead of ≈ n2

� Reducing the {f̂i }
N
i=1 evaluations depending the structure to obtain

those n2
i
points

� Dedicated e�cient procedure to recompute f ,∇f if xk+1−xk is

sparse, only the f̂i ,∇f̂i impact must be recompute

� Brute Force Optimizer (BFO): (Porcelli and Toint [2021])

9

Limitations

� Problem structure must be explicited by the modeler

� "if
∑
n2i ≥ n2: not applicable in large scale, require more space and

computation than BFGS, ex: f (x)=∑n
i=1 f̂i (x1,x2, ...,xi)

� Method to �nd a new basis to increase the sparsity of the problem

Kim et al. [2009]

10

Historically

� Study of PSS is about 40 years old Griewank and Toint [1982a]

� During the last 40 years, work mainly done by Conn, Gould and Toint

� Resulting LANCELOT a Fortran software using the SIF format

� AMPL (commercial software) also uses the PSS and detects it

automatically.

11

My work

� Provide modern software to detect PSS automatically:

� Assess convexity of the fi automatically

� Construct new optimization methods that exploit PSS

� 4 julia modules

� Make it easily usable (6= LANCELOT)

� Survey on PSS

12

Module CalculusTreeTools.jl

� Detect PSS ({f̂i }
N
i=1, {Ui }

N
i=1) automatically from f

� Automatic strict convexity detection and bounds propagation

� Interfaced to JuMP, NLPModelJuMP, ADNLPModel

13

Example

+

+

2

5

sin

+

x1 x2

-

×

x2 x3

2

+

x3 x4

f1(x)= 52 [5] constant non strictly convex

f2(x)= sin(x1+x2) [−1,1] nonlinear non strictly convex

f3(x)= x2×x3 [−∞,∞] quadratic non strictly convex

f4(x)=−(x3+x4)
2 [0,∞] quadratic non strictly convex

14

Example

+

+

2

5

sin

+

x1 x2

-

×

x2 x3

2

+

x3 x4

U1 = 0 U2 =
(
1 0 0 0

0 1 0 0

)
or U2 =

(
1 1 0 0

)
U3 =

(
0 1 0 0

0 0 1 0

)

U4 =
(
0 0 1 0

0 0 0 1

)
or U4 =

(
0 0 1 1

)

15

Module PartiallySeparableNLPModel.jl

� de�ne the algorithm structures around PSS

� Test problem Rosenbrock function (Rn →R)

Figure 1: PSF gradient t/n Figure 2: comparison ton AD t/n

16

Module PartiallySeparableSolver.jl

� Trust-region methods using partitioned-QN solved by CG

� 40 PS problems of size n= 1000

Figure 3: time Figure 4: obj+5grad

17

Module PartitionedStructure.jl

� Dedicated to partitioned structured: vectors/matrices. Also somes

speci�city about PSS.

� Multi-frontal factorization implementation

18

Improving axes

Currently a trust region using a P-BFGS update must solve at each

iterate the partitioned linear system:

Ax = b∑
i U

>
i ÂiUix =∑

i U
>
i b̂i

Âi = B̂i , b̂i =−∇f̂i ,x = s

The complexity of the whole method:

� PQN: update {B̂i }
N
i=1 (fully parallelizable, depend of ni)

� TR management is constant

� Solving the partitioned linear system: CG is state of the art

19

Method to solve a partitonned linear system

The following properties must hold:

� Do not form B

� Be parallel

� To use it with a trust region an approximate solution is enough.

� The solution must be a descent direction

The ideal would be an iterative method that iteratively check TR

constraint (similar to CG).

20

An other way to parallelize

In completely separable case solving each Âi x̂
i = b̂i , x

i ∈Rni solve
Ax = b. (

Â1 0

0 Â2

)(
x

)
=

(
b1

b2

)

� Plan to form a solution x from {x̂ i }2i=1 such that Âi x̂
i = b̂i

� Consequently each Âix
i = b̂i may be solve in parallel.

x =
(
x̂1

x̂2

)
(1)

21

The cas of two overlapping blocs

Suppose Â1,Â2 ∈Rn1×n1 ,Rn2×n2 such that A ∈Rn×n.

Ax =

 Â11,1 Â11,2 0

Â12,1 Â12,2 + Â21,1 Â21,2

0 Â22,1 Â22,2

x =

 b̂11
b̂12 + b̂21

b̂22

= b

Suppose x̂1, x̂2 such that Âp x̂
p = b̂p , p = 1,2 and an approximation x? of

x∗ such that:

x? =

 x̂11
x̂?

x̂22

 x1 =
(
x11
x12

)
x2 =

(
x21
x22

)

22

Consequently Ax?−b

Âp1,1 x̂
p
1
+ Âp1,2 x̂

p
2
= b̂p1

Âp2,1 x̂
p
1
+ Âp2,2 x̂

p
2
= b̂p2

Replace x̂p by Uix
?:

Â11,1 x̂
1
1 + Â11,2 x̂

1
2 + Â11,2(x̂

?− x̂12)= b̂11
Â11,1 x̂

1
1 + Â11,2 x̂

1
2 − b̂11︸ ︷︷ ︸

=0

+Â11,2(x̂
?− x̂12)= 0

Â12,1 x̂
1
1 + Â12,2 x̂

1
2 + Â12,2(x̂

?− x̂12)= b̂12
Â12,1 x̂

1
1 + Â12,2 x̂

1
2 − b̂12︸ ︷︷ ︸+Â12,2(x̂

?− x̂12)= 0

Â21,1 x̂
2
1 + Â22,1 x̂

2
2 + Â22,1(x̂

?− x̂21)= b̂21
Â21,1 x̂

2
1 + Â22,1 x̂

2
2 − b̂21︸ ︷︷ ︸+Â22,1(x̂

?− x̂21)= 0

Â22,1 x̂
2
1 + Â22,2 x̂

2
2 + Â21,1(x̂

?− x̂21)= b̂22
Â22,1 x̂

2
1 + Â22,2 x̂

2
2 − b̂22︸ ︷︷ ︸+Â21,1(x̂

?− x̂21)= 0

23

A new problem

The residual Ax?−b is the following:

Ax?−b =−

 Â11,2(x̂
?− x̂12)

Â12,2(x̂
?− x̂12)+ Â21,1(x̂

?− x̂21)

Â22,1(x̂
?− x̂21)


This equation link x?, x̂? and a approximate solution Ax = b (ie Bs =−g).
We would like to minimize the residual Ax?−b; depending only of x̂?.

Remark: The optimum of this problem Ax?−b may be not null since the

approximate x? is arbitrary.

24

Direct problem

min
x̂?∈Rninter

‖

 Â11,2(x̂
?− x̂12)

Â12,2(x̂
?− x̂12)+ Â21,1(x̂

?− x̂21)

Â22,1(x̂
?− x̂21)


︸ ︷︷ ︸

∈Rn

‖

� Problem dimension: n= n1+n2−ninter

� Variable dimension: ninter

� Directionnal derivative of x̂? are combination of Â1:,2 and Â2:,1

25

Conclusions

An ongoing work:

� Still don't know how to solve this new problem

� May be extends to more than 2 blocs

� Litterature review about bloc matrix resolution (ADMM)

26

References

A Griewank and Ph Toint. On the unconstrained optimization of partially

separable functions. In M. J. D Powell, editor, Nonlinear Optimization

1981, pages 301�312. Academic press, 1982a. Publication editors :

M.J.D. Powell.

A Griewank and Ph Toint. Partitioned variable metric updates for large

structured optimization problems. 39:119�137, 1982b. doi:

10.1007/BF01399316.

A Conn, N Gould, M Lescrenier, and Ph Toint. Performance of a

multifrontal scheme for partially separable optimization. In Advances in

Optimization and Numerical Analysis, pages 79�96. Springer, 1994.

doi: 10.1007/978-94-015-8330-5_6.

A Conn, N Gould, A Sartenaer, and Ph Toint. Convergence properties of

minimization algorithms for convex constraints using a structured trust

region. 6(4):1059�1086, 1996. doi:

https://doi.org/10.1137/S1052623492236481.

C Bischof, A Bouaricha, P Khademi, and J Moré. Computing gradients

in large-scale optimization using automatic di�erentiation. 9:185�194,

1997. doi: https://doi.org/10.1287/ijoc.9.2.185.

26

N Durand and J-M Alliot. Genetic crossover operator for partially

separable functions. In GP 1998, 3rd annual conference on Genetic

Programming, Madison, United States, 1998. URL

https://hal-enac.archives-ouvertes.fr/hal-00937718.

M. Porcelli and Ph Toint. Exploiting problem structure in derivative free

optimization, 2021.

S Kim, M Kojima, and Ph Toint. Recognizing underlying sparsity in

optimization. 119(2):273�303, Jul 2009. ISSN 1436-4646. doi:

10.1007/s10107-008-0210-4. URL

https://doi.org/10.1007/s10107-008-0210-4.

26

https://hal-enac.archives-ouvertes.fr/hal-00937718
https://doi.org/10.1007/s10107-008-0210-4

	References

